

CHALLENGES FOR MARINE CIVIL INFRASTRUCTURE IN THE U.S. ARCTIC

Andrew T. Metzger, Ph.D., P.E.

Assistant Professor
University of Alaska Fairbanks
College of Engineering and Mines
Institute of Northern Engineering

<u>INTRODUCTION</u>

DiminishingArctic Sea-ice...

- Opportunities for:
 - Shipping (see AMSA)
 - O&G Exploration/ Development
 - Access to Mineral Resources
 - Tourism

<u>INTRODUCTION</u>

Increased
 Human Activities
 in the U.S. Arctic

- RequiresCapacity for/to:
 - Security
 - Search and Rescue (SAR)
 - Oil Spill Response
 - Assert Sovereignty

INTRODUCTION

- Impact of diminishing sea-ice: <u>expect</u>
 <u>escalation of maritime operations in the</u>
 U.S. Arctic
 - Increased human activity due to new opportunities
 - Enhancement in Governmental capacity to cope

"Operating in the Arctic: Supporting U.S. Coast Guard Challenges through Research", September 21 – 23, 2010 Sponsored by Dept. of Homeland Security, University of Alaska, Fairbanks.

"AK Deep Draft Arctic Ports Charette", May 16-17, 2011, Anchorage, AK

INTRODUCTION

- If we are to "operate", where will we operate from?....
 - Maritime operations require shore-side support civil infrastructure
 - Safe harbor/ port facilities
 - Fuel
 - Food
 - Waste Handling/ Disposal
 - May require specialized support infrastructure
 - E.g., Oil-spill response

<u>INTRODUCTION</u>

<u>Is there sufficient shore-side</u> <u>infrastructure to support an escalation in</u> <u>arctic maritime operations?</u>

<u>INTRODUCTION</u>

- The remainder of this presentation will consider the following questions:
 - How are some maritime operations presently supported?
 - What is the status of existing shore-side support facilities? (What assets exist?)
 - What are the engineering challenges of building new marine civil infrastructure?

INTRODUCTION

Clarification

- What is meant by Marine Civil Infrastructure:
 - Civil Engineering infrastructure that would support maritime operations
 - E.g.:
 - Safe Harbor/ Ports
 - Fuel/ Re-supply facilities
 - Offshore moorings
 - Aircraft runways

<u>INTRODUCTION</u>

Clarification

- What is meant by an operation:
 - Enterprising human activity
 - E.g.:
 - Military operation
 - O&G exploration and production activities
 - Commercial tourism activities

How are maritime operationspresently supported?

- USCG Arctic MaritimeDomain AwarenessFlights
 - Originate in Kodiak
 - ~800 miles until C-130 is in the Arctic Maritime Domain

How are maritime operationspresently supported?

Cruises to the Arctic

- Often originate in Dutch Harbor
- Sail through Bering Strait
- Time on site limited by fuel/ food
- Limited opportunities for resupply
- "AK Deep Draft Arctic Ports Charette", May 16-17, 2011, Anchorage, AK

www.lonely planet.com

How are maritime operations presently supported?

O&G Interests

- A flotilla of vessels during "ice-free" season
- Self-sustaining

Tourism

- Sail into U.S. Arctic during "ice-free" season
- Also, self-sustaining

Mining Interests

- Lack of infrastructure has precluded production of vast mineral deposits
- Cannot export product
- Exception: Red Dog Mine

www.lonely planet.com

How are maritime operationspresently supported?

Aircraft Facilities

- Extensive network of aircraft runways
- Most owned/ maintained by Alaska Department of Transportation and Public Facilities (AKDOT&PF)
- Larger aircraft (e.g., 737)
 - Barrow
 - Kotzebue
 - Nome
- More information at: http://dot.alaska.gov

How are maritime operations presently supported?

- Typically, base of operations is far removed from theater of operations
- Generally, operation must be selfsustaining
- Larger aircraft can land in Barrow, Kotzebue or Nome

www.lonely planet.com

¬ "Ports"

- Marine Exchange of Alaska (<u>www.mxak.org</u>)
- Western Alaska
- North Slope

Marine Exchange of Alaska www.mxak.org

(What is available?)

- "Ports" Western Alaska
 - Nome
 - Kotzebue
 - Bethel
 - Point Hope
 - Unalakleet

Marine Exchange of Alaska www.mxak.org

(What is available?)

Port of Nome

- South Dock
 - Bulk Cargo Dock
 - Length: 200'
 - Draft: 22.5'
- Westgold Dock
 - Bulk Cargo Dock
 - Length: 190′
 - Draft: 22.5′
- Small Boat Harbor
 - Floating Dock
 - Length: 120'
 - Draft: 8'

Marine Exchange of Alaska www.mxak.org

(What is available?)

Port of Kotzebue

- Bulk materials wharf
- Privately owned/ operated
- Liquid Cargo Storage: 146,000 Barrels
- Vessel haul-out area: 1.5 acres
- 1.6 acres of unpaved storage
- Berthing Length: ~400'; Draft: 10'

Port of BethelBarga dock

- Barge dock
- Several miles up Kuskokwim R.

(www.worldportsource.com)

Photo by the Claypool family

(What is available?)

Point Hope

No dock facilities

Photo by Community and Natural Resources Lab, University of Illinois at Urbana-Champaign

Unalakleet

No Dock Facilities

Photo by the Native Village of Unalakleet IRA Council;

http://www.kawerak.org/tribalHomePages/unalaklet/index.html

(What is available?)

Red Dog Zinc Mine

- ~90 Miles north of Kotzebue
- East of Kivalina
- Specialized pier
 - Ore loading

Alaska Department of Commerce, Community, and Economic Development; http://www.commerce.state.ak.us/

- "Ports" North Slope
 - Point Barrow
 - No dock facilities
 - Prudhoe Bay
 - No port

Marine Exchange of Alaska www.mxak.org

Prudhoe Bay
Photo by Douglas Yates;
"Artists of The Arctic",
http://www.arcticrefugeart.org/

- Other Shore-side Infrastructure
 - Lodging
 - Food
 - Water/ Wastewater facilities

- Other Shore-side Infrastructure
 - Numerous communities along the coast
 - However, few options for <u>basing</u> or <u>staging</u> assets communities would be overwhelmed
 - Apparent after USCG, District 17 Forward Operating Location Exercise in 2008, Barrow, AK:

"The existing infrastructure in the U.S. Arctic is insufficient to support prolonged or seasonal Coast Guard operations."

"Non-governmental berthing/messing in the U.S. Arctic is insufficient to support prolonged or seasonal Coast Guard operations"

(What is available?)

Aircraft Facilities

(What is available?)

- In Summary marine civil infrastructure
 - Locations with "port" facilities:
 - Nome
 - Kotzebue limited draft
 - Bethel municipal barge dock
 - Red Dog Mine specialized (private)
 - Arctic/ Sub-arctic coastlines of Alaska lack shore-side civil infrastructure needed to support escalating maritime operations
 - Will likely need facilities to support future operations – both governmental and civilian

www.lonely planet.com

- Challenges to Planning, Designing,
 Constructing and Maintaining new marine civil infrastructure
 - Challenges of the arctic environment:
 - Extreme cold temperatures
 - Sea-ice
 - Permafrost terrestrial and sub-sea
 - Accelerating Littoral Drift (from erosion) due to diminishing sea-ice

- Challenges to Planning, Designing,
 Constructing and Maintaining new marine civil infrastructure
 - Challenges in the U.S. Arctic:
 - Bathymetry not well defined
 - Logistical challenges
 - <u>Environmental parameters needed for</u>
 <u>engineering design are not readily available</u>
 - Need engineering design criteria for the U.S. Arctic

- Scenario Building a port in the Arctic
- Engineering Challenges:
 - Most of the Chukchi and Beaufort seas are shallow near shore
 - Dredge a navigation channel
 - Will accelerated erosion quickly fill in the channel?
 - If we expose sub-sea permafrost, will the soil melt and the channel collapse?
 - Ice-floes are known to gouge the seafloor near shore.
 - Will ice gouging "bulldoze" soil into the channel?
- Should we explore alternatives to conventional port design?

- Scenario Design an offshore vessel mooring to support operations
- Consult the "Handbook":
 - UFC 4-159-03 Design: Moorings
 - Environmental parapmters:
 - Consider the possibility of ice
 - If ice is a concern, requires special analysis
 - No further information given

- Scenario Design an offshore vessel mooring to support operations
- Engineering Challenges:
 - How do we design a mooring to survive sea-ice?
 - What are the design wind an sea conditions?
 - Data collected to date may not be appropriate for engineering design...why?
 - A reliably engineered system is not designed for the mean, it must be designed for the extreme.
 - What are extreme metocean condition in the U.S. Arctic?
 - What will they be in the future??...(climate change)

- Scenario Design an offshore vessel mooring to support operations
- ISO 19906: Petroleum and natural gas industries –
 Arctic Offshore structures
 - Design normative intended to answer some of these questions
 - Provides a rational basis for the design of "reliable" offshore structures in the Arctic.
 - However, design values for U.S waters are lacking

 Scenario – Design an offshore vessel mooring to support operations

Table B.8-1 - Chukchi Sea meteorological conditions

((Southwest Region		Northwest Region		Southeastern Region		Northeast Region	
	Parameter	Average Annual Value	Range of Annual Values						
	Meximum (°C)	27,5	20 to 30	18.2	15 to 20	20	15 to 25	16	10 b 20
Air temperature	Mnimum (°C)	-46	-40 to -50	-45	40 to 48	-40	-35 to -45	-44	40 to -50
	Freezing degree days	No/	ND	ND	ND	3300	2500 to 3600	4000	3500 to 4500
Wind speed @ 10 m elevation	10 minute average (m/s)	30	ND	43	ND	ND	ND	ND	ND
Wind direction	Daminant winter (direction / % opeumence)	NE/33	ND	NE/33	ND	E /25 to 35	ND	SE /25 to 30	ND
	Dominant Summer (Direction 7% Occurration)	E/29	ND	E/29	ND	W to NW / 25 to 30	ND	E / 25 to 40	ND
Predipitation	Amust rainfall (min)	380	ND	265	ND	221	150 to 300	157	100 to 200
	Annual andwarf (mm)	ND	ND	ND	ND	1143	900 to 1400	530	300 to 700
Visibility (fog: snow, etc.)	Annual number days with wishilly < 1 km	66	ND	75	ND	> 30	20 to 40	> 30	20 to 40

Scenario – Design an offshore vessel mooring to support operations

Table B.8-2 - Chukchi Sea oceanographic conditions

		Southwest Region		Northwest Region		Southeastern Region		Northeast Region	
	Parameter	Average Annual Value	Range of Annual Values	Average Annual Value	Range of Annual Values	Average Annual Value	Range of Alynoid Values	Average Angual Value	Range of Annual Values
Waves - nearshore /<100 m water	Significant wave height (m)	60 to 8.0	12,0 to 14,0	ND.	ND		6 to 10	16	5 to 8
depth)	Range of zero-crossing periods (sec)	6 b 7	6 to 10	ND.	ND	81612	8 10 14	8 to 10	8 to 12
Current	Near surface maximum speed (cm/sec)	0,15 to 0,2	ND	NO	ND	>0,5	ragions only)	>0,5	-1,0 (localized regions only)
	Bottom meximum speed (cm/sec)	ND	ND	ND	ND	340	8 to 10	< 10	8 to 10
Tidel current	Maximum surface speed (cm/sec)	ND	ND	ND	ND	0,15	Q1 b 02	0,15	0,1 6 02
Tide	Tidal range (total) (m)	0,3 to 0,6	ND	ND/	NO	NO	NO	0,4	Q3 to 0,5
Wind induced surge	Water depth range total (m)	3,0 to 3,7	ND	ND	ND	30 to 32	29 to 33	30 to 32	29 to 33
	Average surface salinity (ppl)	28 lb 31	ND	ND	ND		6 to 10	6	5 to 8
Water temperature	Summer surface meximum (°C)	6 to 7	ND	ND	ND	16	14 to 18	11	10 to 12
	Summer surface average (*C)	165	/ND	ND	ND	10	8 to 12	6	5 to 7
Seebed	Gouge depth (m)	ND /	ND	ND	ND	ND	NO	ND	ND
gedechnicel – loe induced gauge	Water depth range (m)	ND /	ND	ND	ND	ND	ND	ND	ND
Selemic	Magnitude	/ND	ND	No	ND	ND	ND	ND	ND

J		Southwest Region		Northwest Region		Southeastern Region		Northeast Region	
	Parameter	Average Annual Value	Range of Annual Values	Average Aresual Value	Range of Annual Values	Average Annual Value	Range of Annual Values	Average Annual Value	Range of Annual Values
Ocazimence /	Finition	Mid Nov	Early Nov - Late Nov	Early Oct	Allyear	December	Late Novembe r to late Decembe	Novemb er	Late October to early December
	Life ion L	Late June	Early June – late July	Early Aug	Allyear	May	Late April to late May	July	Md June to late August
Level ice (first-	Landfast to thickness (m)	1,6 to 1,8	1,5 to 2,0	None	None	1,2	0,9 to 1,2	1,5	1,3 to 1,7
	Fine thickness (m)	0,7 to 1,2	0,1 to 1,8	1,2 to 1,8	0,5 to 2,0	Q5 to 1,2	0,5 to 1,8	0,7 b 1,4	0,7 to 1,8
Raffed ice	Raffed los thideness (m)	ND	ND	ND	ND	1,0 to 2,0	1,0 to 3,0	1,0 to 2,0	1,0 to 3,0
Rubble fields	Sail height (m)	ND	ND	ND	ND	1 to 2	1 to 3	2	1 to 3
	Langth (n)	ND	ND	ND	ND	300 to 1000	300 to 1000	300 to 1000	300 to 1000
Ridges (first- year)	Sail height (m)	1,7 to 2,0	1,5 to 2,5	2,0 to 2,2	1,0102,5	1 to 2	1 to 3	2	1 to 3
	Keel depth (m)	ND	ND	ND	ND	10	8 to 15	10	8 to 15

111

 Scenario – Design an offshore vessel mooring to support operations

Table B.7-1 - Beaufort Sea meteorological conditions

	Parameter	Average annual value	Range in annual values
100 1010	Maximum (*C)	∕ 20	10 to 30
Air temperature	Minimum (*C)	-30	-20 to -40
-30-7-1	Freezing degree days	4 500	3 500 to 5 500
Wind speed @ 10 m elevation	10 minute average (m/s)	16 to 22	13 to 33
	Dominant winter direction	275*	ND
Wind direction	Dominant summer direction	50° (50% of strong winds are from N and NW)	ND
D-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Annual rainfall (mm)	150	100 to 200
Precipitation	Annual snowfall (mm)	750	600 to 1 100
Visibility (fog, snow, etc.)	Annual number of days with visibility less than 5 miles	20 % of the time	ND

Table B.7-2 - Beaufort Sea oceanographic conditions

	Parameter	Average annual value	Range in annual values
Waves - offshore (> 100m	Significant wave height (m)	2,3	0,5 to 3,8
water depth)	Range of zero-crossing periods (sec)	7,3	3,7 to 9,2
	Near surface maximum speed (cm/sec)	4	2 to 6
Current	Bottom maximum speed (cm/sec)	ND	ND
Tidal current	Maximum surface speed (cm/sec)	ND	ND
7ide	Tidal range (total) (m)	ND	ND
Wind induced surge	Water depth increase range total (m)	ND	ND
V7-	Average surface salinity (ppt)	2 to 30	ND
	Summer surface maximum (*C)	ND	ND
Water temperature	Summer surface average (°C)	Up to 10 C	ND
Seabed geolechnical -	Gouge depth (m)	4,5	6 to 7

- Engineering design criteria for the U.S Arctic
 - "A problem fully defined is a problem partially solved..."
 - Environmental demands on new Arctic marine civil infrastructure must be well-understood to design successful engineered systems

- Engineering design criteria for the U.S Arctic
 - Environmental demands on marine transportation infrastructure (E.g., harbors, port facilities, offshore moorings) in the Arctic:
 - Design wind speed
 - Design wave height
 - Design current velocity
 - Understand sub-sea permafrost
 - Sea-ice
 - Thickness distribution in the various regions
 - Mechanical properties (e.g., strength of sea ice)
 - Design floe velocity

- Engineering design criteria for the U.S Arctic
 - Must characterize the extreme-value events statistically low probability of occurrence
 - This information is necessary to design and construct safe and reliable infrastructure
 - Safe for those that use the facility, or may be impacted by a failure
 - Reliable so the facilities are functional when needed

- Engineering design criteria for the U.S Arctic
 - "Reliability-based" engineering practices exist –
 E.g., buildings, highway bridges, water, wastewater systems, etc.
 - Require input appropriate for the U.S. Arctic
 - Need the mean + dispersion of data to identify extreme values

- Engineering design criteria for the U.S Arctic
 - My view:

Developing reliability-based engineering design criteria for "our" Arctic will require a strong collaborative relationship between scientists and engineers that specialize in cold regions issues.

College of Engineering and Mines Institute of Northern engineering University of Alaska Fairbanks

Andrew T. Metzger
atmetzger@alaska.edu
907.474.6120